
A bit of Relationships advice – Part 1

Many new users of Access are unsure about the difference between query joins and table relationships.

When a query is created, tables (and queries) can be joined in different ways (inner/left/right joins) whether or
not a relationship has been defined at table level. See the article Types of Query Joins for more information
Furthermore, different query joins can be used with any table relationships already created.

In truth, there are many similarities between query joins and table relationships.
If relationships have been applied, these will automatically appear for those tables when used in the query
designer window. However, that isn’t important enough to justify their use

As a result, there is some disagreement amongst developers about the use of table relationships
Some developers apply them rigorously to any tables with linked data. Others hardly ever use them.

However, relationships have another very important purpose – enforcing referential integrity.

Before explaining that concept, I will explore some of the ways that relationships can be created at table level:

1. Using the Relationships window
Click Relationships on the Database Tools ribbon to open the Relationships window. Depending on your
settings, you may find this already contains several system tables even in a new blank database.

Many developers remove these system tables from the window by hiding these tables.
Right click anywhere on each table and select Hide Table

NOTE: this removes the tables from the window but does NOT delete the relationship

To create new relationships, add two or more linked tables into the window as done in the query designer:

• Right click and select Add Table

• Click the Design tab in the ribbon and select Add Table

• Drag the tables into the window

 Then join the tables using suitable fields in each table. By default, an inner join is created. For example:

The relationships can be edited or deleted by right clicking on the join line:

If you click Delete, the relationship is removed.

Click Edit Relationship to alter the relationship created

Click Join Type and a window familiar from the query designer will appear

The join types are INNER, LEFT OUTER and RIGHT OUTER. The default is Option 1 (INNER)

If option 2 is chosen, the relationship diagram changes to:

As previously mentioned, the most important reason for using table relationships is to apply referential
integrity (RI). This is used to prevent orphan data remaining in a ‘child’ table after corresponding data is
deleted in the ‘parent’ table.

First consider 2 tables joined but without applying referential integrity

This shows the tracks for the album with ID=4

If that album is deleted in tblAlbums, the corresponding tracks are NOT deleted in tblAlbumTracks.
Those records are now orphaned

To add RI, click Enforce Referential Integrity on the Edit Relationships window then click OK

Depending on the fields you have joined, the join line will be marked:

• 1-1 (one to one) where both fields are primary keys

• 1-ꚙ (1 to many) where one field is not a primary key (so multiple records are possible)

 NOTE:

It is best to apply RI before adding data to the tables
You will not be able to enforce RI if one table has records that are missing in the other table

If you try and delete album ID=4 now, Access prevents you doing so as there are related records in
tblAlbumTracks

Similarly, it will not allow you to add a record in tblAlbumTracks for a non-existent album 5

To fix this issue, we need to check the cascade update/delete options.
Doing so, ensures RI is retained when fields are updated and/or records are deleted

When you try to delete album #4 now, Access warns you of the consequences

Clicking Yes deletes the corresponding records in both tables

Similarly if album #4 is renumbered as e.g. 14 in tblAlbums, the corresponding field is updated in
tblAlbumTracks ensuring that related records remain related

NOTE: It is NOT possible to enforce referential integrity between 2 fields where neither is a primary key
field (indeterminate join). This is because there is no unique index

 Continue adding relationships as appropriate to other tables in your database

The relationships can also be saved as a report from the Design ribbon when the relationships window is
displayed. However, the report layout isn’t very good and is difficult to modify

 For large databases containing many tables, the relationships window can become very crowded

 You can move/shrink items to help improve the layout to some extent.
 By this stage, you may wish to hide some of the tables without deleting the relationships between them

 NOTE:
 For linked tables, the relationships need to be created in the linked backend database
 You can display a backend table relationship in the frontend relationships window.
 However, doing this will not override any relationship already created in the backend

2. Using subdatasheets
Another way of adding relationships is to use subdatasheets on the Home tab

Select the table to be linked and the Master/Child fields then click OK

 The table will now show a + sign indicating it has a linked subdatasheet

 Click the + to show the subdatasheet for one or more records

 Click the – to close the subdatasheet again

If you have several tables that can be joined, this can be repeated to create cascading subdatasheets for all
tables you have linked

However, the use of subdatasheets can be very confusing to end users.
Subdatasheets also slow form loading as each subdatasheet has to be loaded when the form opens
For those reasons, many developers do not use subdatasheets.
Relationships created using subdatasheets do not automatically appear in the relationships window
To display relationships created using subdatasheets, click All Relationships on the Design ribbon

Similarly, relationships created from the relationships window do not automatically create subdatasheets

3. Managing relationships using code

It is also possible to add (or delete) relationships using VBA.
For example, use this code to create a relationship between the 2 tables used above

Function CreateRelationship()

On Error GoTo Err_Handler
 Dim db As DAO.Database
 Dim rel As DAO.Relation
 Dim fld As DAO.Field

 'Initialize
 Set db = CurrentDb()

 'Create a new relationship.
 Set rel = db.CreateRelation("tblAlbumstblAlbumsTracks")

 'Define its properties.
 With rel
 'Specify the primary table.
 .Table = "tblAlbums"
 'Specify the related table.
 .ForeignTable = "tblAlbumsTracks"
 'Specify attributes for cascading updates and deletes.
 .Attributes = dbRelationUpdateCascade + dbRelationDeleteCascade

 'Add the fields to the relationship.
 'Field name in primary table.
 Set fld = .CreateField("ID")
 'Field name in related table.
 fld.ForeignName = "ID"
 'Append the field.
 .Fields.Append fld

 'Repeat for other fields if a multi-field relation.
 End With

 'Save the newly defined relation to the Relations collection.
 db.Relations.Append rel
 'Debug.Print "Relationship created."

 'Clean up
 Set fld = Nothing
 Set rel = Nothing
 Set db = Nothing

Exit_Handler:
 Exit Function

Err_Handler:
 'error 3012 if relationship already exists
 MsgBox "Error " & Err.Number & " in CreateRelationship procedure : " & _
 Err.description, vbCritical, "Program error"
 Resume Exit_Handler

End Function

This code deletes the relationship if it exists

Function DeleteRelationship()

On Error GoTo Err_Handler

 DBEngine(0)(0).Relations.Delete "tblAlbumstblAlbumsTracks"

Exit_Handler:
 Exit Function

Err_Handler:
 'err 3265 if relationship doesn't exist
 MsgBox "Error " & Err.Number & " in DeleteRelationship procedure : " & _
 Err.description, vbCritical, "Program error"
 Resume Exit_Handler
End Function

For more details and example code, see http://allenbrowne.com/func-DAO.html#CreateRelationDAO

The second part of this article explores how the relationship details are stored by Access using a hidden
system table MSysRelationships

Part 2 – Analysing Relationships

The first part of this article explored how relationships are used with particular reference to referential
integrity.

The article also discussed how the relationships window can get overcrowded resulting in the need to hide
tables:

However, if the tables are hidden, how can we still keep a check on the relationships in use.
The answer is to query the hidden system table MSysRelationships where the information is stored

By default, this does not appear in the navigation pane. To make the table visible temporarily, tick Show
Hidden Objects and Show System Objects in Navigation Options

http://allenbrowne.com/func-DAO.html#CreateRelationDAO

The table contains 8 fields – two of these (ccolumn and icolumn) can be ignored

The MSysRelationships table is READ ONLY so no damage can be done.
However, it is better to create a query then hide the system tables again.
The MSys tables themselves are excluded from this query and aliases used to clarify the purpose of each
field

SELECT MSysRelationships.szRelationship AS RelationshipName, MSysRelationships.szObject AS TableName,
MSysRelationships.szColumn AS FieldName, MSysRelationships.szReferencedObject AS ParentTableName,
MSysRelationships.szReferencedColumn AS ParentFieldName, MSysRelationships.grbit AS RelValue
FROM MSysRelationships
WHERE (((MSysRelationships.szObject) Not Like 'MSys*'));

For example:

The query shows the relationship name together with the table and field names being joined.
However, the important field here is a long integer field ‘grbit’ which has been given the alias RelValue
The values indicate the type of join used and whether referential integrity is being enforced

The ‘base value’ = 0 is for an inner join with referential integrity using PK field in one table and a foreign key
in the other

Relationship/Join Type grbit

1 to many (PK to FK) 0

1:1 join (PK to PK) 1

Referential Integrity not enforced 2

Cascade Update 256

Cascade Delete 4096

Left Outer 16777216

Right Outer 33554432

The grbit values are cumulative. Some examples include:

Join
Type

Join Value PK field
Join

RI Cascade
Update

Cascade
Delete

Relationship Calculation Rel Value
(grbit)

Inner Indeterminate Neither No N/A N/A 2 2

Inner 1-many One No N/A N/A 2 2

Inner 1-many One Yes No No 0 0

Inner 1-many One Yes Yes No 0 + 256 256

Inner 1-many One Yes No Yes 0 + 4032 4096

Inner 1-many One Yes Yes Yes 0 + 256 + 4096 4352

Inner 1-1 Both No N/A N/A 1 +2 3

Inner 1-1 Both Yes No No 1 1

Inner 1-1 Both Yes Yes No 1+256 257

Inner 1-1 Both Yes No Yes 1+4096 4097

Inner 1-1 Both Yes Yes Yes 1+256+4096 4353

Left Indeterminate Neither No N/A N/A 16777216 + 2 16777218

Left 1-many One No N/A N/A 16777216 + 2 16777218

Left 1-many One Yes No No 16777216 + 0 16777216

Left 1-many One Yes Yes Yes 16777216 +0 +256 +4096 16781568

Left 1-1 Both Yes No No 16777216 + 1 16777217

Left 1-1 Both Yes Yes No 16777216 + 1 + 256 16777453

Left 1-1 Both Yes No Yes 16777216 + 1 + 4096 16781313

Left 1-1 Both Yes Yes Yes 16777216 + 1 + 256 + 4096 16781569

Right Indeterminate Neither No N/A N/A 3355432 + 2 33554434

Right 1-many One No N/A N/A 3355432 + 2 33554434

Right 1-many One Yes No No 3355432 + 0 33554432

Right 1-many One Yes Yes Yes 33554432 + 256 + 4096 33558784

Right 1-1 Both Yes No No 33554432 + 1 33554433

Right 1-1 Both Yes Yes No 33554432 + 1 + 256 33554689

Right 1-1 Both Yes No Yes 33554432 + 1 + 4096 33558529

Right 1-1 Both Yes Yes Yes 33554432 + 1 + 256 + 4096 33559785

NOTE: A SELF join linking PK field to another field will be 1 to many
Hence an inner self join = 1 (using RI) or 3 (without RI)

Some examples:

a) 2 inner joins – no RI

b) 2 inner joins with RI (1-many) but no cascade update / cascade delete

c) 2 inner joins – one with 1-many RI but not cascade update/cascade delete ; other Indeterminate

d) Inner 1:1 join on PK field– no RI

e) Inner 1:1 join on PK field – with RI and Cascade Update / Cascade Delete

f) 3 left joins (one 1-1; two 1-many) ; all with RI and cascade update/delete

g) Outer self join without RI

h) 2 inner joins on linked tables – RI cannot be enforced in the front end db

If you are interested, you can use the supplied query qryRelationships in your own databases to explore
other relationship types not covered above

I hope the above article has added to your understanding of relationships including the purpose of
referential integrity as well as explaining how Access stores this information in the MSysRelationships
system table

Colin Riddington Mendip Data Systems Updated 29 Sept 2019

